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• Unbiased search can yield unintuitive solutions 

• Can scan through structures and compositions faster than 
is possible experimentally  

• Can access the space of materials not experimentally known 

Accurate 
electronic 
structure 
methods          

The Future: Computer-Aided Materials Design 

• Can accelerate the 
discovery and 
deployment of new 
materials 

Efficient 
search algorithms 



Dirac’s Challenge 

“The underlying physical laws necessary 
for the mathematical theory of a large 
part of physics and the whole of 
chemistry are thus completely known, 
and the difficulty is only that the exact 
application of these laws leads to 
equations much too complicated to be 
soluble. It therefore becomes desirable 
that approximate practical methods of 
applying quantum mechanics should be 
developed, which can lead to an 
explanation of the main features of 
complex atomic systems ... ” 

-P. A. M. Dirac, 1929 

P. A. M. Dirac 
Physics Nobel 

Prize, 1933 



The Many (Many, Many) Body Problem 

Schrödinger’s Equation: 

But… 

There are as many electrons in a penny 
as stars in the known universe! 

The physical laws are completely known 



Electronic Structure Methods for Materials Properties 

Ground State  Charged Excitation Neutral Excitation 

DFT BSE GW + electronic 
relaxation 

+ electron-hole 
interaction 

Structure 
Mechanical 
properties 
Vibrational 
spectrum 

Ionization potential (IP) 
Electron Affinity (EA) 

Fundamental gap 
Defect/dopant charge 

transition levels 

Absorption 
spectrum 

Optical gap 
Exciton binding 

energy 

TDDFT 
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Electron 
Density 

ion-e Many-body  
wave function 

3 3N 

DFT-  Density Functional Theory 

The density is used as the basic variable 
instead of the many-body wave function 

with no loss of information 

Use what you can measure! 

The Hohenberg & Kohn theorem  (1964): 

One-to-one correspondence between 

the ground state density and the 

external potential 

Walter Kohn 
Nobel Prize 

in Chemistry, 
1998 

For DFT 



Exact mapping to a single particle problem with the many-body 
effects contained in the exchange-correlation functional 

Kohn & Sham, 1965 

Vxc is unknown and 
must be approximated 

kinetic ion-e many-body e-e 

DFT-  Density Functional Theory 

The Kohn-Sham equation is a Schrödinger-
like eigenvalue equation, solved self-

consistently to find the ground state density 
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The success of DFT 
calculations hinges 
on a good choice of 
approximation for 

the exchange-
correlation 
functional 

DFT-  Density Functional Theory 



The local density approximation (LDA)  Exc is 
approximated by its value per particle in a uniform 
electron gas weighted by the local density 

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. 
Rev. Lett. 77, 3865 (1996); 78, 1396 (1997) 

DFT Functionals: Local and Semi-Local Functionals  

J. P. Perdew, MRS 
Bulletin 38, 743 (2013) 

Perdew’s ladder of 
DFT functionals 

Generalized gradient approximation (GGA)  Exc 
includes a dependence on the density gradient to 
account for density variations (PBE) 

Meta-GGA  Exc also depends on the 
kinetic energy density (TPSS) 

D. M. Ceperley , B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) 

J. Tao , J.P. Perdew , V.N. Staroverov , G.E. Scuseria 
Phys. Rev. Lett. 91, 146401 (2003) 



J. P. Perdew, MRS 
Bulletin 38, 743 (2013) 

Perdew’s ladder of 
DFT functionals 
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 C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999) 

DFT Functionals: Hybrid Functionals  

Hybrid Functionals  A fraction,α, of exact (Fock) 
exchange is mixed with GGA exchange and 
correlation. PBE0 has 25% EXX 

Range-Separated Hybrids The Coulomb potential 
is split into short-range and long-range parts 

1/ω is a characteristic length 
scale for SR-LR transition 

1

𝑟12
=
erfc (𝜔𝑟12)

𝑟12
+
erf (𝜔𝑟12)

𝑟12
 

HSE reduces to PBE0 in the SR and to 
PBE in the LR (α=0.25; ω=0.11 Bohr-1 

𝐸𝑥𝑐
𝐻𝑆𝐸 = 𝛼𝐸𝑥

𝐻𝐹,𝑆𝑅 𝜔 + 1 − 𝛼 𝐸𝑥
𝜔𝑃𝐵𝑅,𝐿𝑅 𝜔 + 𝐸𝑐

𝑃𝐵𝐸 

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 
118, 8207 (2003); 124, 219906 (2006) 



Pathologies of Semi-Local Functionals 

The Self-Interaction Error:  Spurious 
Coulomb repulsion of an electron from 
itself due to incomplete cancellation of 
the self-interaction in the Hartree term 
by the approximate exchange term 

The (lack of) Derivative Discontinuity: 
The chemical potential is supposed to 
jump discontinuously when going 
through an integer particle number 

Effects: Destabilization of localized states and severe gap underestimation  

Hybrid functionals mitigate (but not completely correct!) these deficiencies 



The GW Approximation  
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The quasiparticle equation: 

The GW approximation (Hedin, 1965): 

iGW 
The self-energy is approximated by the first order term in a perturbative 
expansion in the screened Coulomb interaction 

G0W0 (Hybertsen and Louie, 1986): 

Assume that the KS wave-function and eigenvalues are good 
approximations for the many-body wave-function and QP energies  

Calculate the QP energies non-self-consistently as perturbative 
corrections to the KS energies:  

0 0 0 0G W G WKS

i i i xc i
E V     

Use KS orbitals and energies to evaluate G0 and W0 

many-body 

self-energy 



DFT in Practice: Common Basis Sets and Codes 

To solve the Kohn-Sham eigenvalue equation in practice, it must be 
discretized in a basis set. Different DFT codes use different basis sets: 

Plane-waves  (PW) are the most convenient basis set for periodic 
systems: VASP, Quantum Espresso, ABINIT, CASTEP 

Other types of basis sets: 
Real space: PARSEC, OCTOPUS 
Wavelets: BigDFT, MADNESS 
Gaussian orbitals (GTO): NWChem, Q-Chem, Gaussian, CRYSTAL 
Slater orbitals (STO): ADF 
Numeric atom-centered orbitals (NAO): FHI-aims, SIESTA CONQUEST 
Full potential linearized augmented plane-waves (FP-LAPW): EXCITING, 
FLEUR, ELK, WIEN2k 
 
 See also: 
https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-
state_physics_software 



DFT in Practice: Pseudo Potentials 

all-e 
          

Core electrons do not contribute 
significantly to chemical bonding 
and physical phenomena of 
interest (except for X-ray 
spectroscopies) but do 
contribute high frequency terms 
in the wave-function that are 
numerically difficult to deal with 

pseudo 
          

The wave-function in the core 
region is replaced by a smooth 
function and the 1/r potential by 
a slowly-varying pseudo-potential 

Common types of  
pseudo-potentials: 
• Norm-conserving 
• Ultra-soft 
• Projector augmented waves (PAW) 



Keeping Supercomputers Busy… 

Hopper (#34) 
Cray XE6 

153,216 cores 
1.28 petaflops 

Mira (#5) 
BlueGene/Q 

786,432 cores 
8.6 petaflops 

Edison (#18) 
Cray XC30 

133,824 cores 
2.77 petaflops 

The computational cost of 
quantum mechanical simulations 
increases with the accuracy of 
the method and with the 
system’s size and complexity  

Configuration space exploration 
may require running thousands 
of trial structures 

New at Tulane: 
Cypress (#271) 

Dell cluster 
2,480 Intel Ivy 
Bridge+ 15,128 
Xeon Phi cores 
0.7 petaflops  



Computational Cost of Different Methods (FHI-aims)  
 

 

Scaling of semi-local DFT: O(N3) -> O(N) 

Hybrid DFT: O(N4) -> O(N)*large prefactor 

G0W0: O(N4) -> O(N3)  (post SCF) 

PBE 

PBEh 

G0W0@PBE 

Local and semi-local functionals ->  
low computational cost, good scaling 

Non-local functional -> better accuracy, 
higher computational cost, worse scaling 
 



Applying DFT to Defects in Semiconductors  
 

 

Formation energies: 

Neutral defect: 

Charged defect: 

Freysoldt et al., Rev. Mod. Phys. 86, 253 (2014)  

The chemical potential: 

Determined by the conditions (T,P) of the 
experiment and used to simulate different 
conditions 

A consistent choice of reference must be 
made, either to the total energy of the 
elemental phases at 0K or at STP 

Chemical potentials are bound by the 
existence or appearance of secondary phases 



The defect is placed in a large simulation cell with periodic 
boundary conditions 

Higher effective concentration of defects  

Interactions between periodic replicas may broaden the defect 
state  

For charged defects a compensating background charge is added 

The slow decay of the Coulomb potential leads to spurious 
interactions 

Applying DFT to Defects in Semiconductors  
 

 

H. P. Komsa, T. Rantala, & 
A. Pasquarello PRB 86, 
045112 (2012) 

Various correction schemes: 

Makov and Payne (MP) 

Freysoldt, Neugebauer, and 
Van de Walle (FNV) 

Lany and Zunger (LZ) 

Potential alignment (PA) 

Defects in diamond 

The supercell 
approximation: 



Applying DFT to Defects in Semiconductors  
 

 

Comprehensive review: Freysoldt et al., Rev. Mod. Phys. 86, 253 (2014)  

Things to worry about: 

(In)accuracy of the exchange-correlation functional 

Supercell artifacts 

Best practices: 

Start by reproducing known results 

Check carefully the sensitivity of the results to the parameters 
of the calculations (DFT functional, supercell size, etc.) 

Cross-validate using different methods 

Qualitative trends are more reliable than absolute numbers 



Case Study: Designing a Shallow Donor in Diamond  
 

 

Jonathan E. Moussa, Noa Marom, Na Sai, James R. Chelikowsky  
PRL 108, 226404 (2012) 

Motivation: 

Diamond has  desirable properties for high-power, high-
temperature electronics 

Boron is a good p-type dopant 

The lack of appropriate n-type dopant limits its applications 

P. W. May “A New Diamond Age?” Science 319, 1490 (2008) 

UT-Austin, 2010 



Case Study: Designing a Shallow Donor in Diamond  
 

 

Shallow donor proposals: 

J. E. Moussa, N. Marom, N. Sai, J. R. Chelikowsky PRL 108, 226404 (2012) 

Is it shallow?  Can it be synthesized? 

The broken C-N bond near a substitutional N impurity forms a deep, 
localized donor state 

Preserving the bond may create a shallower and more delocalized donor 

A series of XNn impurity complexes is generated by reducing the valence of 
the central atom and compensating with neighboring N atoms  

For LiN4 there are no broken bonds at the equilibrium geometry 



Case Study: Designing a Shallow Donor in Diamond  
 

 

Method: 

Decomposition of the donor activation energy: 

Relaxation energy (the energy difference 
between the charged and neutral geometries) 
calculated with a total energy method: PBE 

Vertical ionization energy (at the fixed 
geometry of the ionized donor)  calculated 
with an accurate quasi-particle method: PBE0-ε 
and corrected for finite size effects  

J. E. Moussa, N. Marom, N. Sai, J. R. Chelikowsky PRL 108, 226404 (2012) 

M. Jain, J. R. Chelikowsky, 
S.G. Louie  PRL 107, 

216803 (2011) 



Case Study: Designing a Shallow Donor in Diamond  
 

 

PBE0-ε: 

A PBE-based hybrid 
functional with a system-
dependent fraction,α, of 
exact (Fock) exchange, 
determined by the 
dielectric constant: 

α = 1/ε 

Marquez et al. PRB 83, 
035119 (2011) 

For diamond: 
ε = 5.7; α= 0.18 

 

J. E. Moussa, N. Marom, N. Sai, J. R. Chelikowsky PRL 108, 226404 (2012) 

Step 1: Pick a reliable method 



Case Study: Designing a Shallow Donor in Diamond  
 

 

Step 2: Finite size correction 

Defect band dispersion model: 

Interactions between periodic replicas cause 
broadening of the defect band 

∆𝑫
𝒊𝒐𝒏𝒊𝒛𝒆 was calculated using supercells of 5x5x5 

to 8x8x8 diamond unit cells 

The impurity band becomes shallower and 
narrower with size 

Define:  

 

 

6x6x6 supercell 

J. E. Moussa, N. Marom, N. Sai, J. R. Chelikowsky PRL 108, 226404 (2012) 

A least square fit is performed with x as a free parameter to minimize the size 

dependence of ∆𝑫
𝒊𝒐𝒏𝒊𝒛𝒆 around an asymptotic value 

This gives ∆𝑫
𝒊𝒐𝒏𝒊𝒛𝒆 =0.27 eV (x = 0.74) 



The marker method: 

Activation energies are calculated based on PBE total energy differences 
and referenced to an experimentally known “marker” impurity 

Case Study: Designing a Shallow Donor in Diamond  
 

 

Step 3: Cross-validation 

J. E. Moussa, N. Marom, N. Sai, J. R. Chelikowsky PRL 108, 226404 (2012) 

A. Resende et al., Phys. Rev. Lett. 82, 2111 (1999) 

same simulation conditions 
same material environment 
same defect type 
same charge state 

fit to experiment 

The applicability of the marker method is limited to cases with: 

Activation energies obtained with the marker method are overestimated 
due to the self-interaction (delocalization) error in PBE 



Case Study: Designing a Shallow Donor in Diamond  
 

 

LiN4 is a promising shallow donor in diamond 

J. E. Moussa, N. Marom, N. Sai, J. R. Chelikowsky PRL 108, 226404 (2012) 



Case Study: Designing a Shallow Donor in Diamond  
 

 

Possible CVD precursor:  

1,7-diazacyclododecane-4,10-diamine can strongly  bind a Li atom 

The Li atom is not bound to the B-center in diamond but 
kinetically stabilized by a high energy barrier  

J. E. Moussa, N. Marom, N. Sai, J. R. Chelikowsky PRL 108, 226404 (2012) 

E=0.00 eV E= 0.91 eV E= -1.59 eV 



Applying DFT to Defects in Semiconductors  
 

 

Comprehensive review: Freysoldt et al., Rev. Mod. Phys. 86, 253 (2014)  

Things to worry about: 

(In)accuracy of the exchange-correlation functional 

Periodic boundary conditions artifacts 

Best practices: 

Start by reproducing known results 

Check carefully the sensitivity of the results to the parameters 
of the calculations (DFT functional, supercell size, etc.) 

Cross-validate using different methods 

Qualitative trends are more reliable than absolute numbers 


